
PoolBot: Physics-Aware Mobile Manipulator for
Multi-Shot Autonomous Billiards

Avi Narula
Electrical Engineering with Computing
Massachusetts Institute of Technology

Cambridge, United States
avin@mit.edu

Leo Sun
Artificial Intelligence and Decision Making

Massachusetts Institute of Technology
Cambridge, United States

leosun@mit.edu

Suraj Reddy
Electrical Engineering with Computing
Massachusetts Institute of Technology

Cambridge, United States
surajrdy@mit.edu

Abstract—This paper presents PoolBot, a physics-aware mobile
manipulation system for autonomous pool playing on a standard
pool table. PoolBot moves beyond prior fixed-base and single-
shot systems by integrating whole-table mobility and physics-
based shot planning to play multi-shot sequences and successfully
score more than 1 ball through our full-stack system. Our
system combines a pool planning pipeline, a mobile base that
repositions around the table to maintain feasible shot geometry,
and a manipulator that executes strikes with an inverse dynamics
controller generated by a trajectory-checked shot planner. The
planner evaluates collisions, feasibility, and pocketing likelihood
to select optimal shots in sequence. In simulation, PoolBot
achieves 55% shot success rate and clears an average of 2.6 balls
per run. These results demonstrate that mobile manipulation
coupled with physics-aware pool solving enables robust multi-
shot autonomous billiards.

I. INTRODUCTION

The game of pool involves using a cue/stick to strike the
cue ball, aiming to hit the other balls into the pockets at the
edges of the table. The game’s complexities, which make pool
even difficult for humans, come from planning the optimal
shot to hit and accurately hitting the ball [1]. Our idea is
inspired by the Outstanding Project “An Autonomous Pool-
Playing Robot” by Jinger Chong and Eugenia Feng, which had
a few limitations as outlined in their video: (1) Only pocketed
a single ball. (2) The robotic arm was fixed to one side of
the table. We plan to solve these limitations and are aiming to
have a mobile manipulator with planning that maximizes the
number of balls successfully pocketed given a random game
state with only one type of balls. We originally aimed to pocket
a full rack of 15 balls, but to keep our project within scope,
we decided to focus on scoring more than one ball in a single
run.

From a robotics perspective, pool provides a compact
benchmark for several core manipulation challenges: (1) high-
precision contact initiation, where millimeter-scale deviations
produce large outcome differences; (2) physics-aware plan-
ning, requiring prediction of ball trajectories, rebounds, and
pocket entry margins; and (3) mobile manipulation, where
the robot must reposition itself to maintain feasible strike
geometry. These challenges make pool an effective testbed
for studying how robots integrate physical dynamics and
motion planning in a closed-loop system. By solving pool,

we effectively solve a simplified version of real-world tasks
like clearing debris, constrained reaching, and long-horizon
manipulation planning.

This project is interesting to us because it combines some-
thing we genuinely enjoy, playing pool, with the technical
challenges of robotics. Ultimately, this pool “game” serves
as a proxy for solving greater engineering challenges, such
as physics-based intermediate-horizon decision making, along
with transferring logic solvers to the physical world. Possible
applications of the work we will do will relate to things like
disaster recovery, for example, where robots must understand
the consequences of their actions in the physical world (i.e.,
moving rubble out of the way without injuring a human).
Additionally, another interesting aspect is how we combine
an arm manipulator with a mobile base, creating a system that
can move around the table, line up shots, and shoot balls in
a coordinated way, which would be quite similar to mobile
manipulators we deploy in the real world!

II. RELATED WORKS

As mentioned above, our project is building off of one
of the previous 6.4210/6.4212 Outstanding Projects, “An Au-
tonomous Pool-Playing Robot” by Jinger Chong and Eugenia
Feng [4]. This set the foundations of our problem; however,
we are planning to address its shortcomings, namely, Mobile
Manipulation and Long-Horizon Gameplay. Chong and Feng’s
work was motivated by combining multiple methodologies in
class to create a proof of concept for manipulator capable
of hitting a ball, but was mainly limited as they could only
hit one ball. In particular, shot selection was governed by a
simple angular heuristic and did not consider positional play,
a key tactic in long-horizon pool games. We retain the same
basic cue-ball to object-ball to pocket formulation but extend
this line of work along two main points: (i) enabling multi-
shot sequences that explicitly reason about the changing table
configuration and (ii) introducing full-table mobility so the
robot can reposition in accordance to position play.

More broadly, prior work on pool-playing robots explores
complementary approaches to perception, planning, and con-
trol. Greenspan’s “Toward a Competitive Pool-Playing Robot”
[1] analyzes the geometry and physics of billiards, empha-
sizing accurate modeling of ball trajectories, cushions, and



pocket entry tolerances. This drives our motivation to use a
physics-aware shot planner that explicitly checks for collisions
and pocketability rather than relying solely on local heuris-
tics. Other projects such as Yale’s “Creating an Autonomous
System to Play Pool” [2] and Stanford’s “Deep Cue Learn-
ing” [3] combine vision-based game state identification with
learning-based or reinforcement-learning (RL) strategies for
shot selection. These studies demonstrate the upper bound
of how RL policies can achieve strong performance given
extensive simulated experience, but they did not deal with
mobile manipulators, and require substantial training time and
data.

From our investigation of these studies, we conclude that
heavy-weight deep perception and RL policies are not strictly
necessary for our setting, where the geometry is structured and
the table dynamics are relatively well understood. Instead, we
have chosen to adopt a Kinematics/Dynamics-focused stack
tailored to our system modules. For planning, we build on
the geometric insights of [1] and [4] to design a sampling-
based, physics-consistent shot planner that can be evaluated
without full dynamic simulation. Finally, unlike the non-
mobile manipulator systems in [2]–[4], we pair this planner
with a mobile manipulator capable of moving around the table,
sequencing many shots, and exploiting full-table mobility to
recover from otherwise infeasible configurations.

III. APPROACH

A. System Overview

Given a current table configuration, PoolBot operates in
a closed-loop state machine that integrates planning, control,
and mobility (Fig 1). Firstly, we pass ball positions obtained
from the plant to the physics-aware shot planner (Sec C),
which samples candidate cue directions, checks for collisions,
and selects a ball–pocket–cue direction combination with high
pocketing likelihood. The selected shot defines a desired cue-
ball contact point and cue angle.

The full-table mobility and shot-execution module (Sec. D
and E) then plans a collision-free path for the mobile base
around the table to reach a pose that can successfully solve for
the chosen cue direction, and generates a striking trajectory for
the arm that aligns the cue stick with the cue ball and executes
the shot. After the shot is simulated in Drake, the resulting ball
configuration is fed back into the planning pipeline, and the
loop repeats until no feasible shots remain.

Inverse kinematic failures are handled in the state machine
by trying the next best shot instead. The state machine also
ends if there are three inverse kinematic failures in a row or
if there are no more possible shots to try.

Fig. 1. State Machine representation of closed-loop process of PoolBot

We implement and evaluate PoolBot in the Drake physics
simulator using custom pool table, ball, and cue mod-
els defined in SDF. The table geometry is loaded from
pool_table.sdf, which specifies an 8-foot style playing
surface approximated as a rectangular box of size 2.240 ×
1.120× 0.050 m. Additional box-shaped collision geometries
model the side rails and the corner and middle pocket bevels,
while the pocket openings are represented by gaps in the rail
collision geometry so that balls falling through these regions
below a certain z threshold are considered pocketed.

Pool balls are modeled as rigid spheres using the
primitive_blueball.sdf model. Each ball has mass
m = 0.17 kg and radius R = 0.028575 m (a regula-
tion 2.25-inch billiard ball), with diagonal inertia entries of
5.6 × 10−5 kg · m2. The cue stick is represented by the
cue.sdf model as a cylinder of radius 0.01 m and length
0.30 m with mass 0.5 kg. Gravity is set to 9.81 m/s2 in the
world frame.

The robot model follows the Mobile IIWA setup used in
the course examples with the caveat of mobility: a KUKA
iiwa arm mounted on a planar mobile base that can translate
and rotate around the table. The environment is constructed
by a helper routine (setup_pool_environment in our
code) that instantiates the robot, table, balls, and cue in a
single MultibodyPlant, wires the controllers, and attaches
a MeshCat visualizer for rendering (Fig 2). Contact between
balls, cue, and table is handled by Drake’s compliant contact
and Coulomb friction models. We do not explicitly model spin-
dependent effects or cloth deformation; instead, the simulation
captures the dominant rigid-body interactions (ball–ball, ball–
rail, and cue–ball impacts) while remaining fast enough to roll
out many shots.

Unless otherwise specified in the evaluation section, we
simulate one cue ball and a set of object balls placed on the
table by a random sampler that enforces non-overlap and keeps
balls within the playable region. We have access to ”cheat
ports” that give the ground-truth ball poses from the simulator.



B. Simulation Details

Fig. 2. The setup of the simulation is pictured. Utilizing Inverse Kinematics
to select a cue stick position that targets the cue ball at the desired angle.

C. Friction

While Drake’s hydro-elastic collisions have many benefits,
the hydro-elastic friction was weak despite high friction coef-
ficients, leading to balls never slowing down. We hypothesize
this was the case for two reasons: (1) There is little contact
area between a ball and table as well between two balls. (2)
The balls after being hit end up rolling with slipping which is
physically hard to model.

Our solution was to add another controller to our simulation
diagram which resisted the motion with a proportional spatial
force to spatial velocity. We tune the proportionality constant
to 0.08 which result in visually reasonable friction interactions.
Additionally, as soon as the ball was below 5e − 2, we
increase the proportionality constant to immediately decrease
the velocity to 0. This ensured that each strike occurred with
a fixed table state.[

τ
f

]
= −c

[
γI3 0
0 Pxy

] [
ω
v

]
where c is the damping coefficient, γ = 0.05 is a rotational
scaling factor, and Pxy = diag(1, 1, 0) projects the velocity
onto the table plane.

D. Physics-aware Shot Planner

The shot selection module identifies a feasible and high-
probability pocketing shot by simulating cue-ball interactions
over a dense set of candidate orientations. Rather than solving
a continuous nonlinear program directly, we adopt a sampling-
based optimization strategy that evaluates thousands of po-
tential cue stick angles and selects the angle–ball–pocket
combination with the highest empirical success rate. This
algorithm is visualized in Fig 3.

Fig. 3. Figure showcases a shot selection planning algorithm that optimizes
based on the projected cue ball trajectory and the remaining balls on the board

We parameterize each candidate shot by an angle θ ∈
[0, 2π), which induces a cue-ball direction

dc(θ) =

[
cos θ

sin θ

]
,

and a corresponding ray

ℓc(θ) = {xc + t dc(θ) : t ≥ 0},

where xc is the cue ball position. For each sampled angle,
we check whether this ray intersects a target ball xi at the
correct collision radius 2R by solving the quadratic line–circle
intersection equation

∥xc + t dc(θ)− xi∥2 = (2R)2,

and require a feasible root t > 0. If an intersection exists, the
solver verifies that the path to xi is unoccluded: any secondary
ball xj satisfying

dist(xj , ℓc(θ)) ≤ 2R

invalidates the shot.
Upon a valid collision, the outgoing direction of the target

ball is approximated using a point-contact model, and we
check whether the resulting trajectory reaches a legal pocket
pk by solving

∥xi + t di − pk∥2 = R2
p,

while also ensuring that no intervening balls intersect this path.
Each target ball and pocket pair is scored by counting

the number of sampled angles θm that result in a successful
pocketing shot. This defines a robustness score

Ri,k =
∑
m

1{θm yields a valid hit of ball i into pocket k},

where the indicator is 1 if the angle results in a feasible
pocketing shot and 0 otherwise. The best shot is then defined
as the (i, k) pair with the largest robustness score, and the
median successful angle is selected as the execution angle for
downstream motion planning. This approach yields a practical,
physics-consistent shot planner that handles ball occlusions,
feasibility constraints, and pocket geometry without requiring
full dynamic simulation.



Fig. 4. The trajectory key frames are visualized along with the desired
collision point (in gray) of the cue ball

E. Full-table Mobility

The motion planning around the pool table is broken up into
two heuristics for (1) determining where the base should be
based on the selected shot and (2) moving the base around the
table while avoiding collisions. Both heuristics rely on a pre-
defined graph with nodes evenly spaced around the table and
edges connecting each adjacent node. We chose a density of
10 nodes per meter, this optimizes for speed of the simulation
while enabling enough density for multiple options of shot
selections.

For determining the base position based on the selected
shot, we shortlist nodes around the table which have an angle
between the cue ball and itself within the bounds:

[(shot angle− π)− Offset, (shot angle− π) + Offset]

We chose our offset to be π
2 after completing a small ex-

periment to choose the most optimal angle. Finally, from the
shortlist, we select the node closest to the cue ball as our
”ideal” base position.

For moving around the table, we simply use Breadth First
Search on the graph to get a trajectory for moving around the
table.

While these heuristics are not optimal, their simplicity
matches the difficulty of our problem and allows for quicker
computation compared to more advanced methods of deter-
mining and moving to a base position, such as Reinforcement
Learning and RRT-Connect.

F. Trajectory Planning for Striking Ball

We break up hitting the ball into a pre-shot pose and post-
shot pose which the robot interpolates between. The pre-shot
pose is solved for with an inverse kinematics problem that
aligns the cue tip behind the ball at the correct shot angle and a
predefined pitch angle of 20 degrees. While we move the base
with the previous outlined method, we do not fully constrain
the planar joint of the base in the problem allowing the base
to move more, enabling greater shot flexibility. Additionally,
we optimize the cost of the squared difference from nominal
joint positions: ∑

qi

(qi − qnominal,i)

Given the pre-shot pose, the post-shot pose is solved for by
advancing the cue tip forward along the desired strike direction
by a fixed displacement while preserving the cue orientation.
Specifically, the pre-shot inverse kinematics solution places
the cue tip at a distance (R+ gap) behind the cue ball along
the shot normal and orients the cue at a fixed downward pitch
of 20◦ toward the table. The post-shot pose is then defined by
translating this configuration forward along the same direction
so that the cue tip passes through the original contact point
with the ball.

We then construct N = 8 intermediate ke yframes by
linearly interpolating in task space between Xpre and Xpost.
For each interpolation parameter αj ∈ [0, 1], the desired cue-
tip pose is

Xj = (1− αj)Xpre + αjXpost,

where αj = j
N−1 for j = 0, . . . , N − 1. Each pose Xj

is independently mapped back to joint space by solving the
same inverse kinematics program used for the pre-shot pose,
with the mobile base position locked and the cue orientation
constrained to the fixed shot axis.

This yields a sequence of joint-space keyframes
{q0, . . . , qN−1} that define the strike trajectory. These
keyframes are executed sequentially using an inverse
dynamics controller with short-duration interpolation between
successive configurations. The resulting motion produces
a fast, approximately straight-line cue motion through the
ball, generating a high-impulse, dynamically consistent strike
while maintaining precise directional control.

IV. RESULTS

A. Evaluating Shot Precision

In order to gain insight on whether the controller is ac-
curately following the desired trajectory needed to pocket
balls. We measure our shot precision by calculating the angle
between the desired angle given by our pool solver and the
actual ball angle. We ran 10 random initializations and results
shown in Table I.

TABLE I
EXPERIMENTAL RESULTS: ANGULAR ERROR ANALYSIS

Trial No. Angular Error (rad)

1 0.0071
2 0.0026
3 0.3699
4 0.0044
5 0.0015
6 0.0209
7 0.0033
8 0.0017
9 0.0044

10 0.0017

Mean 0.0418

With an average error of 0.0418 radians (2.39◦), we can
confidently say that our robot’s trajectory is precise and most
missed shots can be attributed to hard-to-follow trajectories



and inverse dynamics controller failure. This, however, is not
the full story because the robot will not take shots when inverse
kinematics fails.

B. Evaluating Multi-shot Sequences

To evaluate our goal of successfully playing multi-shot se-
quences, we count the number of attempted inverse kinematics
solves and balls pocketed over 10 random initializations of
four balls. Results shown in Table II.

TABLE II
SHOT PERFORMANCE STATISTICS OVER 10 GAMES

Attempts Successful Shots Consecutive Balls

4 4 4
5 4 4
7 4 3
9 3 2
5 4 2
3 2 2
8 1 1
4 2 2
4 4 4
5 2 2

Total: 54 Total: 30 Total: 26
Rate 55.6% –

With 55.6 percent of attempted shots being successful, we
leave more to be desired. Looking closer into each individual
initialization, it is clear that this metric is skewed by instances
when inverse kinematics failures occur. When it does not fail,
PoolBot successfully pockets all four with minimal attempts.
These realizations lead us to believe that with a more robust
inverse kinematics problem, and a longer pool stick, balls
could be pocketed more consistently.

CONCLUSIONS

PoolBot achieving 55% shot sucess rate and clearing an av-
erage of 2.6 balls per run demonstrates the feasibility of com-
bining physics-aware optimization and mobile manipulation
in a unified framework, that does not employ learning based
methods, capable of multi-shot autonomous pool play. Our
system improves on prior work through full-table mobility and
a physics-aware shot planner. Although performance remains
limited by simplified physics, heuristics, and robustness, our
results indicate the viability of optimization-driven planning
for contact-rich tasks. Future work includes (1) integration
with a real robot platform, (2) incorporating more accurate
friction modeling, (3) applying learning-based methods to
optimize shot sequencing and base positioning, (4) improving
cue stick trajectories via path planning algorithms (e.g. RRT)
and a refined inverse kinematics formulation, and (5) adding
perception to determine the game state.

ACKNOWLEDGMENT

An immense thank you to the 6.4210 course staff. We
appreciate your unwavering help and dedication throughout
this semester at lecture, office hours, and on Piazza. A special
thank you to our project advisor Noah Fisher for his guidance

and support. Additionally, another special thank you to our
CI-M recitation leader Dave Larson for his insights into
constructing a well written report.

COLLABORATION STATEMENT

TABLE III
TASK CONTRIBUTION RANKING (1ST = PRIMARY LEAD), *EVEN

Task 1st 2nd 3rd

CAD Modeling Suraj R Leo S
Simulation Setup Avinash N Leo S Suraj R
Collision Objects & Placement Suraj R Leo S Avinash N
Motion Planning (Table) Avinash N Suraj R Leo S
Pool Game Solver Leo S Suraj R
Trajectory/IK (Striking) Leo S Avinash N Suraj R
Friction Modeling Avinash N
Experiments *Avinash N *Leo S *Suraj R
Paper Writing Suraj R *Leo S *Avinash N
Video Suraj R *Leo S *Avinash N

REFERENCES

[1] D. Greenspan, “Toward a Competitive Pool-
Playing Robot,” IEEE Computer. [Online]. Available:
https://drdavepoolinfo.com/physics articles/Greenspan IEEE 08 article.pdf.
Accessed: Oct. 30, 2025.

[2] Yale University, “Creating an Autonomous System to Play Pool,”
CPSC659 Project Report. [Online]. Available: https://cpsc659-
bim.gitlab.io/f18/assets/reports/Pool.pdf. Accessed: Oct. 30, 2025.

[3] Stanford University, “Deep Cue Learning,” CS229 Project Report.
[Online]. Available: https://cs229.stanford.edu/proj2018/report/249.pdf.
Accessed: Oct. 30, 2025.

[4] E. Feng, “6.4212 An Autonomous Pool-Playing Robot,” YouTube Video.
[Online]. Available: https://www.youtube.com/watch?v=578RsYdkPGs.
Accessed: Oct. 30, 2025.


